翻訳と辞書
Words near each other
・ Contone
・ Contone (printing)
・ Contoocook
・ Contoocook Lake
・ Contoocook Mills Industrial District
・ Contoocook Railroad Bridge
・ Contoocook Railroad Depot
・ Contoocook River
・ Contoocook River Amusement Park
・ Contoocook, New Hampshire
・ Contorniate
・ Contorsion tensor
・ Contortion
・ Contortion Spur
・ Contortipalpia
Continuous functional calculus
・ Continuous functions on a compact Hausdorff space
・ Continuous game
・ Continuous geometry
・ Continuous graph
・ Continuous group action
・ Continuous gusts
・ Continuous Hahn polynomials
・ Continuous harvest
・ Continuous hyperthermic peritoneal perfusion
・ Continuous ink system
・ Continuous inspection
・ Continuous integrated triage
・ Continuous integration
・ Continuous journey regulation


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Continuous functional calculus : ウィキペディア英語版
Continuous functional calculus
In mathematics, the continuous functional calculus of operator theory and C
*-algebra
theory allows applications of continuous functions to normal elements of a C
*-algebra.
==Theorem ==
Theorem. Let ''x'' be a normal element of a C
*-algebra ''A'' with an identity element e; then there is a unique mapping π : ''f'' → ''f''(''x'') defined for ''f'' a continuous function on the spectrum Sp(''x'') of ''x'' such that π is a unit-preserving morphism of C
*-algebras such that π(1) = e and π(ι) = ''x'', where ι denotes the function ''z'' → ''z'' on Sp(''x'').〔Theorem VII.1 p. 222 in Modern methods of mathematical physics, Vol. 1, Reed M., Simon B.〕
The proof of this fact is almost immediate from the Gelfand representation: it suffices to assume ''A'' is the C
*-algebra of continuous functions on some compact space ''X'' and define
: \pi(f) = f \circ x.
Uniqueness follows from application of the Stone-Weierstrass theorem.
In particular, this implies that bounded normal operators on a Hilbert space have a continuous functional calculus.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Continuous functional calculus」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.